domingo, 27 de mayo de 2012

Teorema del residuo y del factor

Teorema del residuo y del factor


Para hacer comprobaciones sobre lo que se verá en éste tema se puede usar nuestra calculadora de división sintética. Si dividimos el polinomio 2x3 - 4x2 - 3x + 2 entre el polinomio x - 3

division de polinomios

encontramos que el cociente es 2x2 + 2x + 3 y que el residuo es 11. Por otra parte, si evaluamos numéricamente la función polinomial ƒ(x) correspondiente al polinomio 2x3 - 4x2 - 3x + 2 para el valor de x = 3, se obtiene
ƒ(x) = 2x3 - 4x2 - 3x + 2
ƒ(3) = 2(3)3 - 4(3)2 - 3(3) + 2
ƒ(3) = 2(27) - 4(9) - 9 + 2
ƒ(3) = 54 - 36 - 9 + 2
ƒ(3) = 11
No es ninguna casualidad que el residuo de la división anterior entre x - 3 y la evaluación numérica para ƒ(3) ambas den como resultado respectivamente residuo y valor numérico de 11. La explicación de esta coincidencia se encuentra en el Teorema del residuo



 
 





 






DIVISIÓN SINTETICA

DIVISIÓN SINTETICA

La división sintética se realiza para simplificar la división de un polinomio entre otro polinomio de la forma x – c, logrando una manera mas compacta y sencilla de realizar la división.
Ilustraremos como el proceso de creación de la división sintética con un ejemplo:

Comenzamos dividiéndolo normalmente
Pero resulta mucho escribir pues repetimos muchos términos durante el procedimiento, los términos restados pueden quitarse sin crear ninguna confusión, al igual que no es necesario bajar los términos . al eliminar estos términos repetidos el ejercicio nos queda:
Ahora si mantenemos las potencias iguales de x en las columnas de cada potencia y colocando 0 en las faltantes se puede eliminar el escribir las potencias de x, así:
Como para este tipo de división solo se realiza con para divisores de la forma x – c entonces los coeficientes de la parte derecha siempre son 1 – c, por lo que podemos descartar el coeficiente 1 y el signo negativo, también se puede lograr una forma más compacta al mover los números hacia arriba, nos queda de la siguiente forma:
Si ahora insertamos a la primera posición del último renglón al primer coeficiente del residuo (2), tenemos que los primeros números de este renglón son los mismos coeficientes del cociente y el último número es el residuo, como evitamos escribir dos veces eliminamos el cociente.
Esta última forma se llama división sintética, pero ¿como hacerla sin tanto paso?, ahora les presentamos los pasos para llevar a cavo la división sintética:
  1. Se ordenan los coeficientes de los términos en un orden decreciente de potencias de x hasta llegar al exponente cero rellenando con coeficientes cero donde haga falta
  1. Después escribimos “c” en la parte derecha del renglón
  1. Se baja el coeficiente de la izquierda al tercer renglón.
  1. Multiplicamos este coeficiente por “c” para obtener el primer numero del segundo renglón (en el primer espacio de la izquierda nunca se escribe nada).
  1. Simplificamos de manera vertical para obtener el segundo número de el tercer renglón.
  1. Con este último número repetimos los pasos cuatro y cinco hasta encontrar el último número del tercer renglón, que será el residuo.
Ejemplos:
Donde -108 es el residuo
Donde 748 es el residuo y pese a no tener muchos coheficientes vemos que en el resultado si aparecen todos los coheficientes nesesarios para todos los exponentes.
Para generalizar hace falta notar que el signo que tenga el divisor no debe ser necesariamente negativo.  Para el uso de este método puede ser positivo o negativo.


Función algebraica

En matemáticas, una función algebraica es una función que satisface una ecuación polinómica cuyos coeficientes son a su vez polinomios o monomios. Por ejemplo, una función algebraica de una variable x es una solución y a la ecuación
a_n(x)y^n+a_{n-1}(x)y^{n-1}+\cdots+a_0(x)=0
donde los coeficientes ai(x) son funciones polinómicas de x. Una función que no es algebraica es denominada una función trascendente.

En términos más precisos, una función algebraica puede no ser estrictamente una función, por lo menos no en el sentido convencional. Por ejemplo sea la ecuación de una circunferencia:
y^2+x^2=1.\,
La misma determina y, excepto por su signo:
y=\pm \sqrt{1-x^2}.\,
Sin embargo, se considera que ambas ramas pertenecen a la "función" determinada por la ecuación polinómica.

Una función algebraica de n variables es definida en forma similar a la función y que es solución de la ecuación polinómica en n + 1 variables:
p(y,x_1,x_2,\dots,x_n)=0.\,
Normalmente se supone que p debe ser un polinomio irreducible. La existencia de una función algebraica es asegurada por el teorema de la función implícita.

Formalmente, una función algebraica de n variables en el cuerpo K es un elemento del cierre algebraico del cuerpo de las funciones racionales K(x1,...,xn). Para poder comprender a las funciones algebraicas como funciones, es necesario incorporar ideas relativas a las superficies de Riemann o en un ámbito más general sobre variedades algebraicas, y teoría de haces.

 En las funciones algebraicas se ubican las siguientes funciones:

FUNCIÓN RACIONAL

Una función racional es una función que puede ser expresada de la forma:
donde P y Q son polinomios y x una variable, siendo Q distinto del polinomio nulo. Las funciones racionales están definidas o tienen su dominio de definición en todos los valores de x que no anulen el denominador.1
Las funciones racionales tienen diversas aplicaciones en el campo del análisis numérico para interpolar o aproximar los resultados de otras funciones más complejas, ya que son computacionalmente simples de calcular como los polinomios, pero permiten expresar una mayor variedad de comportamientos.

FUNCIONES IRRACIONALES

Las funciones irracionales son aquellas cuya expresión matemática f(x) presenta un radical,
Las características generales de estas funciones son:
a) Si el índice del radical es par, el dominio son los valores para los que el radicando es mayor o igual que cero.
b) Si el índice del radical es impar, el dominio del radicando es negativo o menor que cero.
c) Es continua en su dominio y no tiene asíntotas.

VALOR ABSOLUTO

En matemática, el valor absoluto o módulo1 de un número real es su valor numérico sin tener en cuenta su signo, sea este positivo (+) o negativo (-). Así, por ejemplo, 3 es el valor absoluto de 3 y de -3. El valor absoluto está relacionado con las nociones de magnitud, distancia y norma en diferentes contextos matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.

Clasificación de funciones

Clasificación de funciones

Funciones algebraicas

En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0

Funciones polinómicas

Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es R, es decir, cualquier número real tiene imagen.

Funciones constantes

El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.

Funciones polinómica de primer grado

f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Función afín.
Función lineal.
Función identidad.

Funciones cuadráticas

f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

Funciones a trozos

Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.

Funciones racionales

El criterio viene dado por un cociente entre polinomios:
Función racional
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

Funciones radicales

El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

Funciones trascendentes

La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

Función exponencial

función
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.

Funciones logarítmicas

La función logarítmica en base a es la función inversa de la exponencial en base a.
función
función

Funciones trigonométricas

Función seno

f(x) = sen x

Función coseno

f(x) = cos x

Función tangente

f(x) = tg x

Función cosecante

f(x) = cosec x

Función secante

f(x) = sec x

Función cotangente

f(x) = cotg x



Clasificación


sábado, 26 de mayo de 2012

Sistema de Ecuaciones Cuadraticas

Sistema de Ecuaciones Cuadraticas

En los problemas donde se relacionan las ecuaciones lineales y cuadráticas, normalmente dan lugar a un sistema de ecuaciones de dos incógnitas o de tipo cuadrático ó segundo grado, por lo que la solución de sus raíces es por pares.

Ejemplos:

Calcular los valores que satisfacen en el siguiente sistema de ecuaciones:

3x+2y-13=0……. (1)

X2+y3=13……. (2)

Despejando a x de la ecuación (1) se tiene


Para obtener el valor de x al cuadrado, elevamos el cuadrado ambos miembros de la ecuación (3):


Sustituyendo la ecuación (4) en la ecuación (2):


Despejando el 9 del denominador obtenemos:


Simplificando se obtiene:


Sustituyendo valores en la ecuación general:


Realizando operaciones y simplificando:



Los valores que se obtienen de y son iguales: y
=y=2

Sustituyendo el valor de y en (3) obtenemos el valor de x.


Por lo tanto la solución es solo una y la indicamos por P (3,2)

Calcular los valores que satisfacen el siguiente sistema de ecuaciones:

-x+5=y+1……………………….. (1)

X
+y-2x-6y=22………………. (2)

Despejando x de (1) obtenemos: x=4-y………………….. (3)


Elevando x al cuadrado: x
=16-8y+y……………………. (4)

Sustituyendo (3) y (4) en la ecuación (2):

16-8y+y
+y-8+2y-6y=22


Simplificando se tiene:

-14-12y+2y
=0


Aplicando la ecuación general:


Los valores que se obtienen de y son reales y diferentes:





Sustituyendo el valor de y en la ecuación (3) obtenemos el valor de x:

X
= 4-(7)=-3

Sustituyendo el valor de y2 en la ecuación (3) obtenemos el valor de x2:

X
=4-(-1)=5

Por lo tanto la solución la indicamos por:

P(-3,7) y P(5,-1)

La solución grafica para este sistema de ecuaciones nos presenta los puntos donde se interceptan las dos curvas.

Número complejo

Número complejo

Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones:
Con estas operaciones C tiene la estructura de cuerpo conmutativo
Elemento neutro:
Elemento opuesto:
Elemento unidad:
Elemento inverso: , siempre que
Nótese que el complejo (0,1) verifica , es decir, (link a explicación de extensión de R añadiendo raices de ecuaciones algebraicas )
El cuerpo de los complejos es lo que se denomina un cuerpo algebraicamente cerrado, es decir, toda ecuación algebraica (polinómica) con coeficientes complejos tiene siempre al menos una raíz compleja (y por tanto las tiene todas).
El cuerpo de los complejos no es un cuerpo ordenado. No puede darse en C una relación de orden total que respete las operaciones de suma y producto. No tiene por tanto sentido comparar dos números complejos en la manera en que estamos acostumbrados a hacer con los reales.
Podemos considerar C como un espacio vectorial isomorfo a , de este modo se tiene:
Gráficamente, podemos representar (y por tanto C) como un plano.
Para cada número complejo z, la primera componente, x, se denomina parte real y la segunda, y, se denomina parte imaginaria.
Obviamente, dos números complejos son iguales si y sólo si lo son simultáneamente sus partes reales y sus partes imaginarias.
Usando este tipo de representación, la suma de complejos se corresponde con la suma de vectores. Dados dos vectores y su suma es


Se define el módulo de un número complejo como el módulo del vector que lo representa, es decir, si , entonces el módulo de es .
El conjugado de un número complejo se define como su simétrico respecto del eje real, es decir, si , entonces el conjugado de es .
El opuesto de un número complejo es su simétrico respecto del origen.

Es fácil ver que se cumple, , por tanto podemos expresar el inverso de un número en la forma .
En vez de usar coordenadas cartesianas para representar a los puntos del plano podemos usar coordenadas polares, lo que da lugar a la siguiente forma de representación de los números complejos.

2. Forma polar o módulo-argumento
Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,
donde es el módulo de , y donde q es un argumento de , esto es, q es un ángulo tal que
, .

NOTA: Un número complejo tiene infinitos argumentos distintos. De hecho se puede definir el argumento de un número complejo no nulo como el conjunto de todos los posibles valores q que verifican lo anterior, es decir,
Es claro, por tanto, que si es un valor particular del argumento de , entonces
Se denomina argumento principal al único valor tal que , y se denota
Se verifica entonces que
.
Dos números complejos y , representados en forma polar son iguales si y sólo si sus módulos son iguales , y sus argumentos se diferencian en un número entero de vueltas, es decir, , con .
La forma polar de un número complejo es especialmente cómoda a la hora de multiplicar, ya que basta con multiplicar los módulos y sumar los argumentos, es decir, si , y , entonces

Del mismo modo se puede calcular el cociente de un complejo por otro no nulo sin más que dividir los módulos y restar los argumentos:
,
siempre que .
Las fórmulas anteriores pueden generalizarse para el producto de varios complejos, así, si , para , entonces
Finalmente, en el caso en que todos los factores sean iguales se obtiene la fórmula de Moivre:
Esta fórmula es también válida para exponentes enteros negativos, siempre que .
En particular tenemos otra expresión para el inverso de un número no nulo,
(Aquí puedes ver una aplicación de la fórmula de Moivre)
Cambio de binómica a polar
Cambio de polar a binómica
3. Forma exponencial
Una variante de la forma polar se obtiene al tener en cuenta la conocida como fórmula de Euler:
para .
Esto nos permite escribir un número complejo en la forma siguiente, denominada forma exponencial:
Esta nueva forma es especialmente cómoda para expresar productos y cocientes ya que sólo hay que tener en cuenta las propiedades de la función exponencial (para multiplicar se suman exponentes y para dividir se restan). En particular, para potencias con exponentes enteros se tiene .
Esto nos permite dar una nueva expresión para el inverso de un complejo no nulo en la forma .

Estudiemos ahora las potencias con exponente racional de un número complejo. Dado , sea , para un número natural p.
Si , puesto que , es decir, . Por tanto, , y además, , o sea, , para .
De todos estos valores sólo p consecutivos son distintos, el resto resulta ser repetición sucesiva de valores ya obtenidos. Por tanto, un número complejo tiene siempre p raíces p-ésimas distintas
, para .
Se puede observar que las p raíces pésimas tienen todas el mismo módulo, y sus argumentos se diferencian en cada uno del siguiente, esto es, las raíces p-ésimas se encuentran en los vértices de un polígono regular de p lados incrito en la circunferencia de centro 0 y radio .
Como ejemplo, en la siguiente gráfica podemos ver las raíces quintas de 

raices.gif (8036 bytes)

Puede verse lo mismo en la siguiente animación: